ENGENHARIA QUÍMICA

ANÁLISE TÉCNICA E ECONÔMICA DA ADSORÇÃO DE CROMO HEXAVALENTE A PARTIR DA QUITOSANA EM EFLUENTES INDUSTRIAIS

Alunos: Ana Bárbara S. S. Braga (<u>Braga.anabarbara@gmail.com</u>), Aurea He Su Kim (<u>aureahsk@gmail.com</u>), Letícia G. V. Valezini (<u>leticiagv.v@gmail.com</u>), Patrick de O. Wecchi (<u>Patrick.wecchi@gmail.com</u>), Rafaela W. Soares (rwijtenko@gmail.com)

Orientador: Andreia de Araújo Morandim-Giannetti (preamorandim@fei.edu.br)

INTRODUÇÃO

A poluição ambiental causada pela industrialização e suas consequências negativas ao meio ambiente não são uma novidade e merecem atenção contínua dos governos e da sociedade. Com a necessidade de solucionar a alteração química em águas provenientes de processos industriais provocada pelos resíduos, especialmente neste caso, o cromo hexavalente, estudou-se o processo de adsorção a partir da quitosana, bioadsorvente de origem animal, ativada com o acetato de *n*-butilamônio, que aumenta a porosidade do adsorvente, facilitando o processo.

MATERIAIS E MÉTODOS

Inicialmente, foram realizados cálculos utilizando o balanço material do sistema (Eq.1) e as Isotermas de Langmuir e Freundlich para encontrar a massa ótima e o ponto de operação para os sistema apresentado (concentração inicial igual a 10mg/L, volume de efluente igual a 200mL). Em seguida.

Figura 1 – Procedimentos realizados laboratorialmente

Obtenção do L.I	Caracterização do L.I via Ressonância Magnética (H e C)	Ativação da quitosana	Método colorimétrico	
--------------------	---	-----------------------	-------------------------	--

Figura 2 – Passo a passo da análise técnica do projeto

Figura 3 – Passo a passo da análise econômica do projeto

Cálculo da capacidade de adsorção	Cálculo da massa necessária de adsorvente	Cálculo do custo de cada reaente	Cálculo do custo total do projeto
---	---	----------------------------------	--------------------------------------

RESULTADOS E DISCUSSÕES

Atrávés dos cálculos iniciais, obteve-se as massas a serem utilizadas em um efluente de concentração 10mg/L de CrVI e volume 200mL, apresentadas na Tabela 1.

Tabela 1 – Massas de adsorvente obtidas através dos cálculos iniciais

ISOTERMA	MASSA DE ADSORVENTE (G)
Langmuir	1,85
Freundlich	0,202

Produziu-se então os efluentes sintéticos a partir de dicromato de sódio e água destilada, adicionou-se a massa de quitosana referente e deixou-se os sistemas sob agitação pro duas horas a 180 rpm. Após o término do tempo de agitação, filtrou-se os sistemas e reservou-se até o momento da caracterização (Figuras 4 e 5).

Figura 4 – Efluentes 1,2 e 3 após o processo de adsorção



Figura 5 – Efluentes 4,5 e 6 após o processo de adsorção

Com um efluente não utilizado para a adsorção, realizou-se o método das diluições sucessivas e mediu-se a absorbância de cada amostra para construir a curva de calibração do método colorimétrico com a difenilcarbazida.

A partir da equação obtida da curva de calibração e a absorbância medida, obteve-se a concentração final de cada dos efluentes (Tabela 2).

Tabela 2 – valores de Concentração final para os efluentes

EFLUENTE	ABSORBÂNCIA	CONC. (PPM)
1	0,004	0,42824
2	0,004	0,42824
3	,004	0,42824
4	0,039	5,39159
5	0,039	5,39159
6	0,04	5,5334

Sabendo que nos efluentes 1,2,3 – efluentes que tiveram concentração final menor que a recomendada pelo CONAMA – foi adicionada a massa referente à Isoterma de Langmuir, calculou-se a capacidade de adsorção média referente à tal sistema e, então, a massa de quitosana ativada necessária para tratar 1m3 do efluente de concentração inicial de Cr(IV) igual a 10mg/L. Então, calculou-se o custo do processo e definiu-se as dimensões para o tanque que receberá o processo (Tabela 3).

Tabela 3 – Resultados obtidos das análises técnica e econômica

M quitosana (KG)	7,064
CUSTO (R\$/M³)	989,68
VOLUME DO TANQUE (M³)	2
DIÂMETRO DO TANQUE (M)	1,5
ALTURA DO TANQUE (M)	1,32

CONCLUSÃO

O adsorvente proposto é viável de ser utilizado, já que atinge a concentração requerida em faixas normais de temperatura, além de ser de fácil obtenção.

Quando comparado à outros processos de retirada de cromo hexavalente, a quitosana ativada mostrou-se mais econômica que o uso da CCA (cinza de casca de arroz) e do método utilizando peróxido de hidrogênio, embora seja mais caro que os processos via eletrocoagulação (Al-Al, Cu-Cu, Fe-Fe) e precipitação química com NaOH.

